If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+19w+18=0
a = 4; b = 19; c = +18;
Δ = b2-4ac
Δ = 192-4·4·18
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{73}}{2*4}=\frac{-19-\sqrt{73}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{73}}{2*4}=\frac{-19+\sqrt{73}}{8} $
| -18q=6 | | 5d^2+5d+5-(-6)=0 | | 5d^2+5d+5=-6 | | 199=5x-4(-4x-13) | | 16t^2-1444=0 | | 70+40+x=180 | | 70+40+x=90 | | x+(6x-3)=32 | | W=3/8w | | M^2+11m+12=0 | | 32g-40-7g=25g-8 | | -8x-58=41+x | | 4093n=15 | | 96i+245=52 | | 2x+29+33=90 | | a^2-48+29=0 | | 5m-2(m+2)=-(2m+30) | | 13s-s=13 | | 8/5=7/v | | 5/8x-3/8x=5 | | -9/14d=3/7 | | .6x=9.6 | | 3/7=-9/14d | | 15x+22=42 | | 1/n+2/n+3n=1 | | a+16/7=22 | | 2/3=1.2/n | | 3/7m=-6/7 | | 7×+2y=247 | | (3x-10)+(110-x)+(2x)=180 | | 12u=48 | | 3y+2y=7y |